
NAG Fortran Library Routine Document

D03PLF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D03PLF integrates a system of linear or nonlinear convection-diffusion equations in one space dimension,
with optional source terms and scope for coupled ordinary differential equations (ODEs). The system must
be posed in conservative form. Convection terms are discretised using a sophisticated upwind scheme
involving a user-supplied numerical flux function based on the solution of a Riemann problem at each
mesh point. The method of lines is employed to reduce the partial differential equations (PDEs) to a
system of ODEs, and the resulting system is solved using a backward differentiation formula (BDF)
method or a Theta method.

2 Specification

SUBROUTINE D03PLF(NPDE, TS, TOUT, PDEDEF, NUMFLX, BNDARY, U, NPTS, X,
1 NCODE, ODEDEF, NXI, XI, NEQN, RTOL, ATOL, ITOL, NORM,
2 LAOPT, ALGOPT, W, NW, IW, NIW, ITASK, ITRACE, IND,
3 IFAIL)

INTEGER NPDE, NPTS, NCODE, NXI, NEQN, ITOL, NW, IW(NIW), NIW,
1 ITASK, ITRACE, IND, IFAIL
real TS, TOUT, U(NEQN), X(NPTS), XI(*), RTOL(*), ATOL(*),

1 ALGOPT(30), W(NW)
CHARACTER*1 NORM, LAOPT
EXTERNAL PDEDEF, NUMFLX, BNDARY, ODEDEF

3 Description

D03PLF integrates the system of convection-diffusion equations in conservative form:

XNPDE
j¼1

Pi;j

@Uj

@t
þ @Fi

@x
¼ Ci

@Di

@x
þ Si; ð1Þ

or the hyperbolic convection-only system:

@Ui

@t
þ @Fi

@x
¼ 0; ð2Þ

for i ¼ 1; 2; . . . ;NPDE; a � x � b; t � t0, where the vector U is the set of PDE solution values

Uðx; tÞ ¼ ½U1ðx; tÞ; . . . ; UNPDEðx; tÞ�T :
The optional coupled ODEs are of the general form

Riðt; V ; _VV ; �; U�; U�
x; U

�
t Þ ¼ 0; i ¼ 1; 2; . . . ;NCODE; ð3Þ

where the vector V is the set of ODE solution values

V ðtÞ ¼ ½V1ðtÞ; . . . ; VNCODEðtÞ�T ;
_VV denotes its derivative with respect to time, and Ux is the spatial derivative of U .

In (1), Pi;j, Fi and Ci depend on x, t, U and V ; Di depends on x, t, U , Ux and V ; and Si depends on x, t,

U , V and linearly on _VV . Note that Pi;j, Fi, Ci and Si must not depend on any space derivatives, and Pi;j,

Fi, Ci and Di must not depend on any time derivatives. In terms of conservation laws, Fi, Ci@Di=@x and
Si are the convective flux, diffusion and source terms respectively.
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In (3), � represents a vector of n� spatial coupling points at which the ODEs are coupled to the PDEs.

These points may or may not be equal to PDE spatial mesh points. U�, U�
x and U�

t are the functions U , Ux

and Ut evaluated at these coupling points. Each Ri may depend only linearly on time derivatives. Hence
(3) may be written more precisely as

R ¼ L�M _VV �NU�
t ; ð4Þ

where R ¼ ½R1; . . . ; RNCODE�T, L is a vector of length NCODE, M is an NCODE by NCODE matrix, N is

an NCODE by ðn� � NPDEÞ matrix and the entries in L, M and N may depend on t, �, U�, U�
x and V .

In practice the user only needs to supply a vector of information to define the ODEs and not the matrices
L, M and N . (See Section 5 for the specification of the user-supplied procedure ODEDEF.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xNPTS

are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xNPTS. The initial values of the
functions Uðx; tÞ and V ðtÞ must be given at t ¼ t0.

The PDEs are approximated by a system of ODEs in time for the values of Ui at mesh points using a
spatial discretisation method similar to the central-difference scheme used in D03PCF=D03PCA,
D03PHF=D03PHA and D03PPF=D03PPA, but with the flux Fi replaced by a numerical flux, which is
a representation of the flux taking into account the direction of the flow of information at that point (i.e.,
the direction of the characteristics). Simple central differencing of the numerical flux then becomes a
sophisticated upwind scheme in which the correct direction of upwinding is automatically achieved.

The numerical flux vector, F̂Fi say, must be calculated by the user in terms of the left and right values of the
solution vector U (denoted by UL and UR respectively), at each mid-point of the mesh
xj�1

2
¼ ðxj�1 þ xjÞ=2 for j ¼ 2; 3; . . . ;NPTS. The left and right values are calculated by D03PLF from

two adjacent mesh points using a standard upwind technique combined with a Van Leer slope-limiter (see

LeVeque (1990)). The physically correct value for F̂Fi is derived from the solution of the Riemann problem
given by

@Ui

@t
þ @Fi

@y
¼ 0; ð5Þ

where y ¼ x� xj�1
2
, i.e., y ¼ 0 corresponds to x ¼ xj�1

2
, with discontinuous initial values U ¼ UL for

y < 0 and U ¼ UR for y > 0, using an approximate Riemann solver. This applies for either of the systems
(1) or (2); the numerical flux is independent of the functions Pi;j, Ci, Di and Si. A description of several

approximate Riemann solvers can be found in LeVeque (1990) and Berzins et al. (1989). Roe’s scheme
(Roe (1981)) is perhaps the easiest to understand and use, and a brief summary follows. Consider the
system of PDEs Ut þ Fx ¼ 0 or equivalently Ut þAUx ¼ 0. Provided the system is linear in U , i.e., the

Jacobian matrix A does not depend on U , the numerical flux F̂F is given by

F̂F ¼ 1
2
FL þ FRð Þ � 1

2

XNPDE
k¼1

�kj�kjek; ð6Þ

where FL (FR) is the flux F calculated at the left (right) value of U , denoted by UL (UR); the �k are the
eigenvalues of A; the ek are the right eigenvectors of A; and the �k are defined by

UR � UL ¼
XNPDE
k¼1

�kek: ð7Þ

An example is given in Section 9 and in the D03PFF documentation.

If the system is nonlinear, Roe’s scheme requires that a linearized Jacobian is found (see Roe (1981)).

The functions Pi;j, Ci, Di and Si (but not Fi) must be specified in a subroutine PDEDEF supplied by the

user. The numerical flux F̂Fi must be supplied in a separate user-supplied subroutine NUMFLX. For
problems in the form (2), the actual argument D03PLP may be used for PDEDEF (D03PLP is included in
the NAG Fortran Library; however, its name may be implementation-dependent: see the Users’ Note for
your implementation for details). D03PLP sets the matrix with entries Pi;j to the identity matrix, and the

functions Ci, Di and Si to zero.

D03PLF NAG Fortran Library Manual

D03PLF.2 [NP3546/20A]



The boundary condition specification has sufficient flexibility to allow for different types of problems. For
second-order problems i.e., Di depending on Ux, a boundary condition is required for each PDE at both
boundaries for the problem to be well-posed. If there are no second-order terms present, then the
continuous PDE problem generally requires exactly one boundary conditions for each PDE, that is NPDE
boundary conditions in total. However, in common with most discretisation schemes for first-order
problems, a numerical boundary condition is required at the other boundary for each PDE. In order to be
consistent with the characteristic directions of the PDE system, the numerical boundary conditions must be
derived from the solution inside the domain in some manner (see below). Both types of boundary
conditions must be supplied by the user, i.e., a total of NPDE conditions at each boundary point.

The position of each boundary condition should be chosen with care. In simple terms, if information is
flowing into the domain then a physical boundary condition is required at that boundary, and a numerical
boundary condition is required at the other boundary. In many cases the boundary conditions are simple,
e.g., for the linear advection equation. In general the user should calculate the characteristics of the PDE
system and specify a physical boundary condition for each of the characteristic variables associated with
incoming characteristics, and a numerical boundary condition for each outgoing characteristic.

A common way of providing numerical boundary conditions is to extrapolate the characteristic variables
from the inside of the domain (note that when using banded matrix algebra the fixed bandwidth means that
only linear extrapolation is allowed, i.e., using information at just two interior points adjacent to the
boundary). For problems in which the solution is known to be uniform (in space) towards a boundary
during the period of integration then extrapolation is unnecessary; the numerical boundary condition can be
supplied as the known solution at the boundary. Another method of supplying numerical boundary
conditions involves the solution of the characteristic equations associated with the outgoing characteristics.
Examples of both methods can be found in Section 9 and in the D03PFF documentation.

The boundary conditions must be specified in a subroutine BNDARY (provided by the user) in the form

GL
i ðx; t; U; V ; _VV Þ ¼ 0 at x ¼ a; i ¼ 1; 2; . . . ;NPDE; ð8Þ

at the left-hand boundary, and

GR
i ðx; t; U; V ; _VV Þ ¼ 0 at x ¼ b; i ¼ 1; 2; . . . ;NPDE; ð9Þ

at the right-hand boundary.

Note that spatial derivatives at the boundary are not passed explicitly to the subroutine BNDARY, but they
can be calculated using values of U at and adjacent to the boundaries if required. However, it should be
noted that instabilities may occur if such one-sided differencing opposes the characteristic direction at the
boundary.

The algebraic-differential equation system which is defined by the functions Ri must be specified in a
subroutine ODEDEF supplied by the user. The user must also specify the coupling points � (if any) in the
array XI.

The problem is subject to the following restrictions:

(i) In (1), _VVjðtÞ, for j ¼ 1; 2; . . . ;NCODE, may only appear linearly in the functions Si, for

i ¼ 1; 2; . . . ;NPDE, with a similar restriction for GL
i and GR

i ;

(ii) Pi;j, Fi, Ci and Si must not depend on any space derivatives; and Pi;j, Fi, Ci and Di must not depend

on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) The evaluation of the terms Pi;j, CiDi and Si is done by calling the routine PDEDEF at a point

approximately midway between each pair of mesh points in turn. Any discontinuities in these
functions must therefore be at one or more of the mesh points x1; x2; . . . ; xNPTS;

(v) At least one of the functions Pi;j must be non-zero so that there is a time derivative present in the

PDE problem.

In total there are NPDE� NPTSþ NCODE ODEs in the time direction. This system is then integrated
forwards in time using a BDF or Theta method, optionally switching between Newton’s method and
functional iteration (see Berzins et al. (1989)).
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For further details of the scheme, see Pennington and Berzins (1994) and the references therein.
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5 Parameters

1: NPDE – INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE � 1.

2: TS – real Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

3: TOUT – real Input

On entry: the final value of t to which the integration is to be carried out.

4: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Pi;j, Ci, Di and Si which partially define the system of PDEs.

Pi;j and Ci may depend on x, t, U and V; Di may depend on x, t, U, Ux and V; and Si may

depend on x, t, U, V and linearly on _VV. PDEDEF is called approximately midway between each
pair of mesh points in turn by D03PLF. The actual argument D03PLP may be used for PDEDEF
for problems in the form (2) (D03PLP is included in the NAG Fortran Library; however, its name
may be implementation-dependent: see the Users’ Note for your implementation for details).

Its specification is:

SUBROUTINE PDEDEF(NPDE, T, X, U, UX, NCODE, V, VDOT, P, C, D, S,
1 IRES)

INTEGER NPDE, NCODE, IRES
real T, X, U(NPDE), UX(NPDE), V(*), VDOT(*),

1 P(NPDE,NPDE), C(NPDE), D(NPDE), S(NPDE)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – real Input

On entry: the current value of the independent variable t.
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3: X – real Input

On entry: the current value of the space variable x.

4: U(NPDE) – real array Input

On entry: UðiÞ contains the value of the component Uiðx; tÞ, for i ¼ 1; 2; . . . ;NPDE.

5: UX(NPDE) – real array Input

On entry: UXðiÞ contains the value of the component @Uiðx; tÞ=@x, for
i ¼ 1; 2; . . . ;NPDE.

6: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

7: V(*) – real array Input

On entry: VðiÞ contains the value of component ViðtÞ, for i ¼ 1; 2; . . . ;NCODE.

8: VDOT(*) – real array Input

On entry: VDOTðiÞ contains the value of component _VViðtÞ, for i ¼ 1; 2; . . . ;NCODE.

Note: _VViðtÞ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in Sj, for

j ¼ 1; 2; . . . ;NPDE.

9: P(NPDE,NPDE) – real array Output

On exit: Pði; jÞ must be set to the value of Pi;jðx; t;U;VÞ, for i; j ¼ 1; 2; . . . ;NPDE.

10: C(NPDE) – real array Output

On exit: CðiÞ must be set to the value of Ciðx; t;U;VÞ, for i ¼ 1; 2; . . . ;NPDE.

11: D(NPDE) – real array Output

On exit: DðiÞ must be set to the value of Diðx; t;U; Ux;VÞ, for i ¼ 1; 2; . . . ;NPDE.

12: S(NPDE) – real array Output

On exit: SðiÞ must be set to the value of Siðx; t;U;V; _VVÞ, for i ¼ 1; 2; . . . ;NPDE.

13: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2

indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3

indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set IRES ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets IRES ¼ 3, then D03PLF returns to the calling (sub)program with
the error indicator set to IFAIL ¼ 4.

PDEDEF must be declared as EXTERNAL in the (sub)program from which D03PLF is called.
Parameters denoted as Input must not be changed by this procedure.
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5: NUMFLX – SUBROUTINE, supplied by the user. External Procedure

NUMFLX must supply the numerical flux for each PDE given the left and right values of the
solution vector U. NUMFLX is called approximately midway between each pair of mesh points in
turn by D03PLF.

Its specification is:

SUBROUTINE NUMFLX(NPDE, T, X, NCODE, V, ULEFT, URIGHT, FLUX, IRES)

INTEGER NPDE, NCODE, IRES
real T, X, V(*), ULEFT(NPDE), URIGHT(NPDE), FLUX(NPDE)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – real Input

On entry: the current value of the independent variable t.

3: X – real Input

On entry: the current value of the space variable x.

4: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

5: V(*) – real array Input

On entry: VðiÞ contains the value of the component ViðtÞ, for i ¼ 1; 2; . . . ;NCODE.

6: ULEFT(NPDE) – real array Input

On entry: ULEFTðiÞ contains the left value of the component UiðxÞ, for
i ¼ 1; 2; . . . ;NPDE.

7: URIGHT(NPDE) – real array Input

On entry: URIGHTðiÞ contains the right value of the component UiðxÞ, for
i ¼ 1; 2; . . . ;NPDE.

8: FLUX(NPDE) – real array Output

On exit: FLUXðiÞ must be set to the numerical flux F̂Fi, for i ¼ 1; 2; . . . ;NPDE.

9: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2

indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3

indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set IRES ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets IRES ¼ 3, then D03PLF returns to the calling (sub)program with
the error indicator set to IFAIL ¼ 4.
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NUMFLX must be declared as EXTERNAL in the (sub)program from which D03PLF is called.
Parameters denoted as Input must not be changed by this procedure.

6: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions GL
i and GR

i which describe the physical and numerical
boundary conditions, as given by (8) and (9).

Its specification is:

SUBROUTINE BNDARY(NPDE, NPTS, T, X, U, NCODE, V, VDOT, IBND, G,
1 IRES)

INTEGER NPDE, NPTS, NCODE, IBND, IRES
real T, X(NPTS), U(NPDE,NPTS), V(*), VDOT(*), G(NPDE)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval ½a; b�.

3: T – real Input

On entry: the current value of the independent variable t.

4: X(NPTS) – real array Input

On entry: the mesh points in the spatial direction. X(1) corresponds to the left-hand
boundary, a, and X(NPTS) corresponds to the right-hand boundary, b.

5: U(NPDE,NPTS) – real array Input

On entry: Uði; jÞ contains the value of the component Uiðx; tÞ at x ¼ XðjÞ for
i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NPTS.

Note: if banded matrix algebra is to be used then the functions GL
i and GR

i may depend
on the value of Uiðx; tÞ at the boundary point and the two adjacent points only.

6: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

7: V(*) – real array Input

On entry: VðiÞ contains the value of component ViðtÞ, for i ¼ 1; 2; . . . ;NCODE.

8: VDOT(*) – real array Input

On entry: VDOTðiÞ contains the value of component _VViðtÞ, for i ¼ 1; 2; . . . ;NCODE.

Note: _VViðtÞ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in GL
j and GR

j , for

j ¼ 1; 2; . . . ;NPDE.

9: IBND – INTEGER Input

On entry: specifies which boundary conditions are to be evaluated. If IBND ¼ 0, then
BNDARY must evaluate the left-hand boundary condition at x ¼ a. If IBND 6¼ 0, then
BNDARY must evaluate the right-hand boundary condition at x ¼ b.

10: G(NPDE) – real array Output

On exit: GðiÞ must contain the ith component of either GL
i or GR

i in (8) and (9),
depending on the value of IBND, for i ¼ 1; 2; . . . ;NPDE.
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11: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2

indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3

indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set IRES ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets IRES ¼ 3, then D03PLF returns to the calling (sub)program with
the error indicator set to IFAIL ¼ 4.

BNDARY must be declared as EXTERNAL in the (sub)program from which D03PLF is called.
Parameters denoted as Input must not be changed by this procedure.

7: U(NEQN) – real array Input/Output

On entry: the initial values of the dependent variables defined as follows:

UðNPDE� ðj� 1Þ þ iÞ contain Uiðxj; t0Þ, for i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NPTS and

UðNPTS� NPDEþ kÞ contain Vkðt0Þ, for k ¼ 1; 2; . . . ;NCODE.

On exit: the computed solution Uiðxj; tÞ, for i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NPTS, and VkðtÞ,
for k ¼ 1; 2; . . . ;NCODE, all evaluated at t ¼ TS.

8: NPTS – INTEGER Input

On entry: the number of mesh points in the interval ½a; b�.
Constraint: NPTS � 3.

9: X(NPTS) – real array Input

On entry: the mesh points in the space direction. X(1) must specify the left-hand boundary, a, and
X(NPTS) must specify the right-hand boundary, b.

Constraint: Xð1Þ < Xð2Þ < . . . < XðNPTSÞ.

10: NCODE – INTEGER Input

On entry: the number of coupled ODE components.

Constraint: NCODE � 0.

11: ODEDEF – SUBROUTINE, supplied by the user. External Procedure

ODEDEF must evaluate the functions R, which define the system of ODEs, as given in (4). If the
user wishes to compute the solution of a system of PDEs only (i.e., NCODE ¼) 0, ODEDEF must
be the dummy routine D03PEK. (D03PEK is included in the NAG Fortran Library; however, its
name may be implementation-dependent: see the Users’ Note for your implementation for details.)

Its specification is:

SUBROUTINE ODEDEF(NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX, UCPT,
1 R, IRES)

INTEGER NPDE, NCODE, NXI, IRES
real T, V(*), VDOT(*), XI(*), UCP(NPDE,*),

1 UCPX(NPDE,*), UCPT(NPDE,*), R(*)
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1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – real Input

On entry: the current value of the independent variable t.

3: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

4: V(*) – real array Input

On entry: VðiÞ contains the value of component ViðtÞ, for i ¼ 1; 2; . . . ;NCODE.

5: VDOT(*) – real array Input

On entry: VDOTðiÞ contains the value of component _VViðtÞ, for i ¼ 1; 2; . . . ;NCODE.

6: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

7: XI(*) – real array Input

On entry: XIðiÞ contains the ODE/PDE coupling point, �i, for i ¼ 1; 2; . . . ;NXI.

8: UCP(NPDE,*) – real array Input

On entry: UCPði; jÞ contains the value of Uiðx; tÞ at the coupling point x ¼ �j, for

i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NXI.

9: UCPX(NPDE,*) – real array Input

On entry: UCPXði; jÞ contains the value of @Uiðx; tÞ=@x at the coupling point x ¼ �j, for
i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NXI.

10: UCPT(NPDE,*) – real array Input

On entry: UCPTði; jÞ contains the value of @Uiðx; tÞ=@t at the coupling point x ¼ �j, for
i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NXI.

11: R(*) – real array Output

On exit: RðiÞ must contain the ith component of R, for i ¼ 1; 2; . . . ;NCODE, where R is
defined as

R ¼ L�M _VV �NU�
t ; ð10Þ

or

R ¼ �M _VV �NU�
t : ð11Þ

The definition of R is determined by the input value of IRES.

12: IRES – INTEGER Input/Output

On entry: the form of R that must be returned in the array R. If IRES ¼ 1, then equation
(10) above must be used. If IRES ¼ �1, then the equation (11) above must be used.

On exit: should usually remain unchanged. However, the user may reset IRES to force
the integration routine to take certain actions as described below:
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IRES ¼ 2

indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3

indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set IRES ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets IRES ¼ 3, then D03PLF returns to the calling (sub)program with
the error indicator set to IFAIL ¼ 4.

ODEDEF must be declared as EXTERNAL in the (sub)program from which D03PLF is called.
Parameters denoted as Input must not be changed by this procedure.

12: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

Constraints:

NXI ¼ 0 if NCODE ¼ 0,
NXI � 0 if NCODE > 0.

13: XI(*) – real array Input

Note: the dimension of the array XI must be at least maxð1;NXIÞ.
On entry: XIðiÞ, i ¼ 1; 2; . . . ;NXI, must be set to the ODE/PDE coupling points.

Constraint: Xð1Þ � XIð1Þ < XIð2Þ < . . . < XIðNXIÞ � XðNPTSÞ.

14: NEQN – INTEGER Input

On entry: the number of ODEs in the time direction.

Constraint: NEQN ¼ NPDE� NPTSþ NCODE.

15: RTOL(*) – real array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2 and at least NEQN if
ITOL ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i.

16: ATOL(*) – real array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3 and at least NEQN if
ITOL ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i.

17: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. If ei is the estimated local error for
UðiÞ, i ¼ 1; 2; . . . ;NEQN, and k k denotes the norm, then the error test to be satisfied is
keik < 1:0. ITOL indicates to D03PLF whether to interpret either or both of RTOL and ATOL as a
vector or scalar in the formation of the weights wi used in the calculation of the norm (see the
description of the parameter NORM below):
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ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � jUðiÞj þ ATOLð1Þ
2 scalar vector RTOLð1Þ � jUðiÞj þ ATOLðiÞ
3 vector scalar RTOLðiÞ � jUðiÞj þ ATOLð1Þ
4 vector vector RTOLðiÞ � jUðiÞj þ ATOLðiÞ

Constraint: 1 � ITOL � 4.

18: NORM – CHARACTER*1 Input

On entry: the type of norm to be used. Two options are available:

’1’ – averaged L1 norm.

’2’ – averaged L2 norm.

If Unorm denotes the norm of the vector U of length NEQN, then for the averaged L1 norm

Unorm ¼ 1

NEQN

XNEQN
i¼1

UðiÞ=wi;

and for the averaged L2 norm

Unorm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NEQN

XNEQN
i¼1

ðUðiÞ=wiÞ2
vuut :

See the description of parameter ITOL for the formulation of the weight vector w.

Constraint: NORM ¼ ’1’ or ’2’.

19: LAOPT – CHARACTER*1 Input

On entry: the type of matrix algebra required. The possible choices are:

’F’ – full matrix routines to be used;

’B’ – banded matrix routines to be used;

’S’ – sparse matrix routines to be used.

Constraint: LAOPT ¼ ’F’ , ’B’ or ’S’.

Note: the user is recommended to use the banded option when no coupled ODEs are present
(NCODE ¼ 0). Also, the banded option should not be used if the boundary conditions involve
solution components at points other than the boundary and the immediately adjacent two points.

20: ALGOPT(30) – real array Input

On entry: ALGOPT may be set to control various options available in the integrator. If the user
wishes to employ all the default options, then ALGOPT(1) should be set to 0.0. Default values will
also be used for any other elements of ALGOPT set to zero. The permissible values, default values,
and meanings are as follows:

ALGOPT(1) selects the ODE integration method to be used. If ALGOPTð1Þ ¼ 1:0, a BDF method
is used and if ALGOPTð1Þ ¼ 2:0, a Theta method is used.

The default is ALGOPTð1Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 2:0, then ALGOPTðiÞ, for i ¼ 2; 3; 4 are not used.

ALGOPT(2) specifies the maximum order of the BDF integration formula to be used. ALGOPT(2)
may be 1.0, 2.0, 3.0, 4.0 or 5.0.

The default value is ALGOPTð2Þ ¼ 5:0.
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ALGOPT(3) specifies what method is to be used to solve the system of nonlinear equations arising
on each step of the BDF method. If ALGOPTð3Þ ¼ 1:0 a modified Newton iteration is used and if
ALGOPTð3Þ ¼ 2:0 a functional iteration method is used. If functional iteration is selected and the
integrator encounters difficulty, then there is an automatic switch to the modified Newton iteration.

The default value is ALGOPTð3Þ ¼ 1:0.

ALGOPT(4) specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as

Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ;NPDE for some i or when there is no _VViðtÞ dependence in the coupled

ODE system. If ALGOPTð4Þ ¼ 1:0, then the Petzold test is used. If ALGOPTð4Þ ¼ 2:0, then the
Petzold test is not used.

The default value is ALGOPTð4Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 1:0, then ALGOPTðiÞ, for i ¼ 5, 6, 7 are not used.

ALGOPT(5), specifies the value of Theta to be used in the Theta integration method.

0:51 � ALGOPTð5Þ � 0:99.

The default value is ALGOPTð5Þ ¼ 0:55.

ALGOPT(6) specifies what method is to be used to solve the system of nonlinear equations arising
on each step of the Theta method. If ALGOPTð6Þ ¼ 1:0, a modified Newton iteration is used and if
ALGOPTð6Þ ¼ 2:0, a functional iteration method is used.

The default value is ALGOPTð6Þ ¼ 1:0.

ALGOPT(7) specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If
ALGOPTð7Þ ¼ 1:0, then switching is allowed and if ALGOPTð7Þ ¼ 2:0, then switching is not
allowed.

The default value is ALGOPTð7Þ ¼ 1:0.

ALGOPT(11) specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the parameter ITASK. If ALGOPTð1Þ 6¼ 0:0, a value
of 0.0 for ALGOPT(11), say, should be specified even if ITASK subsequently specifies that tcrit will
not be used.

ALGOPT(12) specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPT(12) should be set to 0.0.

ALGOPT(13) specifies the maximum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPT(13) should be set to 0.0.

ALGOPT(14) specifies the initial step size to be attempted by the integrator. If
ALGOPTð14Þ ¼ 0:0, then the initial step size is calculated internally.

ALGOPT(15) specifies the maximum number of steps to be attempted by the integrator in any one
call. If ALGOPTð15Þ ¼ 0:0, then no limit is imposed.

ALGOPT(23) specifies what method is to be used to solve the nonlinear equations at the initial

point to initialise the values of U, Ut, V and _VV. If ALGOPTð23Þ ¼ 1:0, a modified Newton
iteration is used and if ALGOPTð23Þ ¼ 2:0, functional iteration is used.

The default value is ALGOPTð23Þ ¼ 1:0.

ALGOPT(29) and ALGOPT(30) are used only for the sparse matrix algebra option, i.e.
LAOPT ¼ ’S’.

ALGOPT(29) governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0:0 < ALGOPTð29Þ < 1:0, with smaller values biasing the algorithm
towards maintaining sparsity at the expense of numerical stability. If ALGOPT(29) lies outside the
range then the default value is used. If the routines regard the Jacobian matrix as numerically
singular, then increasing ALGOPT(29) towards 1.0 may help, but at the cost of increased fill-in.

The default value is ALGOPTð29Þ ¼ 0:1.
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ALGOPT(30) is used as the relative pivot threshold during subsequent Jacobian decompositions (see
ALGOPT(29)) below which an internal error is invoked. ALGOPT(30) must be greater than zero,
otherwise the default value is used. If ALGOPT(30) is greater than 1.0 no check is made on the
pivot size, and this may be a necessary option if the Jacobian matrix is found to be numerically
singular (see ALGOPT(29)).

The default value is ALGOPTð30Þ ¼ 0:0001.

21: W(NW) – real array Workspace
22: NW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D03PLF is
called. Its size depends on the type of matrix algebra selected:

LAOPT ¼ ’F’,

NW � NEQN� NEQNþ NEQNþ NWKRESþ LENODE,

LAOPT ¼ ’B’,

NW � ð3�MLUþ 1Þ � NEQNþ NWKRESþ LENODE,

LAOPT ¼ ’S’,

NW � 4� NEQNþ 11� NEQN=2þ 1þ NWKRESþ LENODE.

where MLU ¼ the lower or upper half bandwidths, and

MLU ¼ 3� NPDE� 1, for PDE problems only, and

MLU ¼ NEQN� 1, for coupled PDE/ODE problems.

NWKRES ¼ NPDE� ð2� NPTSþ 6� NXIþ 3� NPDEþ 26Þ þ NXIþ NCODEþ
7� NPTSþ 2

when NCODE > 0, and NXI > 0;

NWKRES ¼ NPDE� ð2� NPTSþ 3� NPDEþ 32Þ þ NCODEþ 7� NPTSþ 3

when NCODE > 0, and NXI ¼ 0;

NWKRES ¼ NPDE� ð2� NPTSþ 3� NPDEþ 32Þ þ 7� NPTSþ 4

when NCODE ¼ 0.

LENODE ¼ ð6þ intðALGOPTð2ÞÞÞ � NEQNþ 50, when the BDF method is used, and

LENODE ¼ 9� NEQNþ 50, when the Theta method is used.

Note: when LAOPT ¼ ’S’, the value of NW may be too small when supplied to the integrator. An
estimate of the minimum size of NW is printed on the current error message unit if ITRACE > 0
and the routine returns with IFAIL ¼ 15.

23: IW(NIW) – INTEGER array Output

On exit: the following components of the array IW concern the efficiency of the integration.

IW(1) contains the number of steps taken in time.

IW(2) contains the number of residual evaluations of the resulting ODE system used. One
such evaluation involves evaluating the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

IW(3) contains the number of Jacobian evaluations performed by the time integrator.

IW(4) contains the order of the BDF method last used in the time integration, if applicable.
When the Theta method is used IW(4) contains no useful information.

IW(5) contains the number of Newton iterations performed by the time integrator. Each
iteration involves residual evaluation of the resulting ODE system followed by a back-
substitution using the LU decomposition of the Jacobian matrix.
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24: NIW – INTEGER Input

On entry: the dimension of the array IW. Its size depends on the type of matrix algebra selected:

LAOPT ¼ ’F’,

NIW � 24,

LAOPT ¼ ’B’,

NIW � NEQNþ 24,

LAOPT ¼ ’S’,

NIW � 25� NEQNþ 24.

Note: when LAOPT ¼ ’S’, the value of NIW may be too small when supplied to the integrator. An
estimate of the minimum size of NIW is printed on the current error message unit if ITRACE > 0 and
the routine returns with IFAIL ¼ 15.

25: ITASK – INTEGER Input

On entry: the task to be performed by the ODE integrator. The permitted values of ITASK and
their meanings are detailed below:

ITASK ¼ 1

normal computation of output values U at t ¼ TOUT (by overshooting and interpolating).

ITASK ¼ 2

take one step in the time direction and return.

ITASK ¼ 3

stop at first internal integration point at or beyond t ¼ TOUT.

ITASK ¼ 4

normal computation of output values U at t ¼ TOUT but without overshooting t ¼ tcrit where
tcrit is described under the parameter ALGOPT.

ITASK ¼ 5

take one step in the time direction and return, without passing tcrit, where tcrit is described
under the parameter ALGOPT.

Constraint: 1 � ITASK � 5.

26: ITRACE – INTEGER Input

stop at first internal integration point at or beyond t.

On entry: the level of trace information required from D03PLF and the underlying ODE solver.
ITRACE may take the value �1, 0, 1, 2, or 3. If ITRACE < �1, then �1 is assumed and similarly
if ITRACE > 3, then 3 is assumed. If ITRACE ¼ �1, no output is generated. If ITRACE ¼ 0,
only warning messages from the PDE solver are printed on the current error message unit (see
X04AAF). If ITRACE > 0, then output from the underlying ODE solver is printed on the current
advisory message unit (see X04ABF). This output contains details of Jacobian entries, the nonlinear
iteration and the time integration during the computation of the ODE system. The advisory
messages are given in greater detail as ITRACE increases. Users are advised to set ITRACE ¼ 0,
unless they are experienced with the sub-chapter D02M–N of the NAG Fortran Library.

27: IND – INTEGER Input/Output

On entry: IND must be set to 0 or 1.

IND ¼ 0

starts or restarts the integration in time.
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IND ¼ 1

continues the integration after an earlier exit from the routine. In this case, only the
parameters TOUT and IFAIL should be reset between calls to D03PLF.

Constraint: 0 � IND � 1.

On exit: IND ¼ 1.

28: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TS � TOUT,
or TOUT� TS is too small,
or ITASK 6¼ 1, 2, 3, 4 or 5,
or at least one of the coupling points defined in array XI is outside the interval

[X(1),X(NPTS)],
or the coupling points are not in strictly increasing order,
or NPTS < 3,
or NPDE < 1,
or LAOPT 6¼ ’F’ , ’B’ or ’S’,
or ITOL 6¼ 1, 2, 3 or 4,
or IND 6¼ 0 or 1,
or incorrectly defined user mesh, i.e., XðiÞ � Xðiþ 1Þ for some i ¼ 1; 2; . . . ;NPTS� 1,
or NW or NIW are too small,
or NCODE and NXI are incorrectly defined,
or IND ¼ 1 on initial entry to D03PLF,
or NEQN 6¼ NPDE� NPTSþ NCODE,
or an element of RTOL or ATOL < 0:0,
or corresponding elements of RTOL and ATOL are both 0.0,
or NORM 6¼ ’1’ or ’2’.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress, with the values of ATOL and RTOL,
across the integration range from the current point t ¼ TS. The components of U contain the
computed values at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t ¼ TS. The problem
may have a singularity, or the error requirement may be inappropriate. Incorrect specification of
boundary conditions may also result in this error.
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IFAIL ¼ 4

In setting up the ODE system, the internal initialisation routine was unable to initialise the derivative
of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in one of the
user-supplied subroutines PDEDEF, NUMFLX, BNDARY or ODEDEF, when the residual in the
underlying ODE solver was being evaluated. Incorrect specification of boundary conditions may
also result in this error.

IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. Check the problem
formulation.

IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in at least one of the
user-supplied subroutines PDEDEF, NUMFLX, BNDARY or ODEDEF. Integration was successful
as far as t ¼ TS.

IFAIL ¼ 7

The values of ATOL and RTOL are so small that the routine is unable to start the integration in
time.

IFAIL ¼ 8

In one of the user-supplied routines, PDEDEF, NUMFLX, BNDARY or ODEDEF, IRES was set to
an invalid value.

IFAIL ¼ 9

A serious error has occurred in an internal call to D02NNF. Check problem specification and all
parameters and array dimensions. Setting ITRACE ¼ 1 may provide more information. If the
problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in ATOL and RTOL is
unlikely to produce any change in the computed solution. (Only applies when the user is not
operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error description
may be directed to the current advisory message unit when ITRACE � 1). If using the sparse
matrix algebra option, the values of ALGOPT(29) and ALGOPT(30) may be inappropriate.

IFAIL ¼ 12

In solving the ODE system, the maximum number of steps specified in ALGOPT(15) has been
taken.

IFAIL ¼ 13

Some error weights wi became zero during the time integration (see description of ITOL). Pure
relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has become zero.
The integration was successful as far as t ¼ TS.

IFAIL ¼ 14

One or more of the functions Pi;j, Di or Ci was detected as depending on time derivatives, which is

not permissible.
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IFAIL ¼ 15

When using the sparse option, the value of NIW or NW was not sufficient (more detailed
information may be directed to the current error message unit).

7 Accuracy

The routine controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so the
accuracy over a number of steps cannot be guaranteed. The user should therefore test the effect of varying
the accuracy parameters, ATOL and RTOL.

8 Further Comments

The routine is designed to solve systems of PDEs in conservative form, with optional source terms which
are independent of space derivatives, and optional second-order diffusion terms. The use of the routine to
solve systems which are not naturally in this form is discouraged, and users are advised to use one of the
central-difference scheme routines for such problems.

Users should be aware of the stability limitations for hyperbolic PDEs. For most problems with small
error tolerances the ODE integrator does not attempt unstable time steps, but in some cases a maximum
time step should be imposed using ALGOPT(13). It is worth experimenting with this parameter,
particularly if the integration appears to progress unrealistically fast (with large time steps). Setting the
maximum time step to the minimum mesh size is a safe measure, although in some cases this may be too
restrictive.

Problems with source terms should be treated with caution, as it is known that for large source terms stable
and reasonable looking solutions can be obtained which are in fact incorrect, exhibiting non-physical
speeds of propagation of discontinuities (typically one spatial mesh point per time step). It is essential to
employ a very fine mesh for problems with source terms and discontinuities, and to check for non-physical
propagation speeds by comparing results for different mesh sizes. Further details and an example can be
found in Pennington and Berzins (1994).

The time taken by the routine depends on the complexity of the system and on the accuracy requested.
For a given system and a fixed accuracy it is approximately proportional to NEQN.

9 Example

For this routine two examples are presented, in Section 9.1 of the documents for D03PLF and D03PLF. In
the example programs distributed to sites, there is a single example program for D03PLF, with a main
program:

* D03PLF Example Program Text
* Mark 18 Revised. NAG Copyright 1997.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. External Subroutines ..
EXTERNAL EX1, EX2

* .. Executable Statements ..
WRITE (NOUT,*) ’D03PLF Example Program Results’
CALL EX1
CALL EX2
STOP
END

The code to solve the two example problems is given in the subroutines EX1 and EX2, in D03PLF and
D03PLF respectively.
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9.1 Example 1

This example is a simple first-order system with coupled ODEs arising from the use of the characteristic
equations for the numerical boundary conditions.

The PDEs are

@U1

@t
þ @U1

@x
þ 2

@U2

@x
¼ 0;

@U2

@t
þ 2

@U1

@x
þ @U2

@x
¼ 0;

for x 2 ½0; 1� and t � 0.

The PDEs have an exact solution given by

U1ðx; tÞ ¼ fðx� 3tÞ þ gðxþ tÞ; U2ðx; tÞ ¼ fðx� 3tÞ � gðxþ tÞ;
where fðzÞ ¼ expð�zÞ sinð2�zÞ, gðzÞ ¼ expð�2�zÞ cosð2�zÞ.
The initial conditions are given by the exact solution.

The characteristic variables are W1 ¼ U1 � U2 and W2 ¼ U1 þ U2, corresponding to the characteristics
given by dx=dt ¼ �1 and dx=dt ¼ 3 respectively. Hence we require a physical boundary condition for
W2 at the left-hand boundary and for W1 at the right-hand boundary (corresponding to the incoming
characteristics), and a numerical boundary condition for W1 at the left-hand boundary and for W2 at the
right-hand boundary (outgoing characteristics).

The physical boundary conditions are obtained from the exact solution, and the numerical boundary
conditions are supplied in the form of the characteristic equations for the outgoing characteristics, that is

@W1

@t
� @W1

@x
¼ 0

at the left-hand boundary, and

@W2

@t
þ 3

@W2

@x
¼ 0

at the right-hand boundary.

In order to specify these boundary conditions, two ODE variables V1 and V2 are introduced, defined by

V1ðtÞ ¼ W1ð0; tÞ ¼ U1ð0; tÞ � U2ð0; tÞ,
V2ðtÞ ¼ W2ð1; tÞ ¼ U1ð1; tÞ þ U2ð1; tÞ.

The coupling points are therefore at x ¼ 0 and x ¼ 1.

The numerical boundary conditions are now

_VV1 �
@W1

@x
¼ 0

at the left-hand boundary, and

_VV2 þ 3
@W2

@x
¼ 0

at the right-hand boundary.

The spatial derivatives are evaluated at the appropriate boundary points in the BNDARY subroutine using
one-sided differences (into the domain and therefore consistent with the characteristic directions).

The numerical flux is calculated using Roe’s approximate Riemann solver (see Section 3 for details),
giving

F̂F ¼ 1
2

3U1L � U1R þ 3U2L þ U2R

3U1L þ U1R þ 3U2L � U2R

� �
:
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9.1.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

SUBROUTINE EX1
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NPDE, NPTS, NCODE, NXI, NEQN, NIW, NW, OUTPTS
PARAMETER (NPDE=2,NPTS=141,NCODE=2,NXI=2,

+ NEQN=NPDE*NPTS+NCODE,NIW=15700,NW=11000,OUTPTS=8)
* .. Scalars in Common ..

real P
* .. Local Scalars ..

real TOUT, TS, XX
INTEGER I, IFAIL, II, IND, ITASK, ITOL, ITRACE, J, NOP
CHARACTER LAOPT, NORM

* .. Local Arrays ..
real ALGOPT(30), ATOL(1), RTOL(1), U(NEQN),

+ UE(NPDE,OUTPTS), UOUT(NPDE,OUTPTS), W(NW),
+ X(NPTS), XI(NXI), XOUT(OUTPTS)
INTEGER IW(NIW)

* .. External Functions ..
real X01AAF
EXTERNAL X01AAF

* .. External Subroutines ..
EXTERNAL BNDRY1, D03PLF, EXACT, NMFLX1, ODEDEF, PDEDEF

* .. Common blocks ..
COMMON /PI/P

* .. Save statement ..
SAVE /PI/

* .. Executable Statements ..
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Example 1’
WRITE (NOUT,*)

*
XX = 0.0e0
P = X01AAF(XX)
ITRACE = 0
ITOL = 1
NORM = ’1’
ATOL(1) = 0.1e-4
RTOL(1) = 0.25e-3
WRITE (NOUT,99995) NPTS, ATOL, RTOL

*
* Initialise mesh ..
*

DO 20 I = 1, NPTS
X(I) = (I-1.0e0)/(NPTS-1.0e0)

20 CONTINUE
XI(1) = 0.0e0
XI(2) = 1.0e0

*
* Set initial values ..

TS = 0.0e0
CALL EXACT(TS,U,NPDE,X,NPTS)
U(NEQN-1) = U(1) - U(2)
U(NEQN) = U(NEQN-2) + U(NEQN-3)

*
LAOPT = ’S’
IND = 0
ITASK = 1

*
DO 40 I = 1, 30

ALGOPT(I) = 0.0e0
40 CONTINUE

* Theta integration
ALGOPT(1) = 1.0e0
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* Sparse matrix algebra parameters
ALGOPT(29) = 0.1e0
ALGOPT(30) = 1.1e0

*
TOUT = 0.5e0
IFAIL = 0

*
CALL D03PLF(NPDE,TS,TOUT,PDEDEF,NMFLX1,BNDRY1,U,NPTS,X,NCODE,

+ ODEDEF,NXI,XI,NEQN,RTOL,ATOL,ITOL,NORM,LAOPT,ALGOPT,W,
+ NW,IW,NIW,ITASK,ITRACE,IND,IFAIL)

*
* Set output points ..

NOP = 0
DO 60 I = 1, NPTS, 20

NOP = NOP + 1
XOUT(NOP) = X(I)

60 CONTINUE
*

WRITE (NOUT,99996) TS
WRITE (NOUT,99999)

*
DO 80 I = 1, NOP

II = 1 + 20*(I-1)
J = NPDE*(II-1)
UOUT(1,I) = U(J+1)
UOUT(2,I) = U(J+2)

80 CONTINUE
*
* Check against exact solution ..

CALL EXACT(TOUT,UE,NPDE,XOUT,NOP)
DO 100 I = 1, NOP

WRITE (NOUT,99998) XOUT(I), UOUT(1,I), UE(1,I), UOUT(2,I),
+ UE(2,I)

100 CONTINUE
WRITE (NOUT,99997)

*
WRITE (NOUT,99994) IW(1), IW(2), IW(3), IW(5)
RETURN

*
99999 FORMAT (8X,’X’,8X,’Approx U1’,3X,’Exact U1’,4X,’Approx U2’,3X,

+ ’Exact U2’,/)
99998 FORMAT (5(3X,F9.4))
99997 FORMAT (1X,e10.4,4(2X,e12.4))
99996 FORMAT (’ T = ’,F6.3)
99995 FORMAT (/’ NPTS = ’,I4,’ ATOL = ’,e10.3,’ RTOL = ’,e10.3,/)
99994 FORMAT (’ Number of integration steps in time = ’,I6,/’ Number ’,

+ ’of function evaluations = ’,I6,/’ Number of Jacobian ’,
+ ’evaluations =’,I6,/’ Number of iterations = ’,I6,/)
END

*
SUBROUTINE PDEDEF(NPDE,T,X,U,UX,NCODE,V,VDOT,P,C,D,S,IRES)

* .. Scalar Arguments ..
real T, X
INTEGER IRES, NCODE, NPDE

* .. Array Arguments ..
real C(NPDE), D(NPDE), P(NPDE,NPDE), S(NPDE),

+ U(NPDE), UX(NPDE), V(*), VDOT(*)
* .. Local Scalars ..

INTEGER I, J
* .. Executable Statements ..

DO 40 I = 1, NPDE
C(I) = 1.0e0
D(I) = 0.0e0
S(I) = 0.0e0
DO 20 J = 1, NPDE

IF (I.EQ.J) THEN
P(I,J) = 1.0e0

ELSE
P(I,J) = 0.0e0

END IF
20 CONTINUE
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40 CONTINUE
RETURN
END

*
SUBROUTINE BNDRY1(NPDE,NPTS,T,X,U,NCODE,V,VDOT,IBND,G,IRES)

* .. Scalar Arguments ..
real T
INTEGER IBND, IRES, NCODE, NPDE, NPTS

* .. Array Arguments ..
real G(NPDE), U(NPDE,NPTS), V(*), VDOT(*), X(NPTS)

* .. Local Scalars ..
real DUDX

* .. Local Arrays ..
real UE(2,1)

* .. External Subroutines ..
EXTERNAL EXACT

* .. Executable Statements ..
IF (IBND.EQ.0) THEN

CALL EXACT(T,UE,NPDE,X(1),1)
G(1) = U(1,1) + U(2,1) - UE(1,1) - UE(2,1)
DUDX = (U(1,2)-U(2,2)-U(1,1)+U(2,1))/(X(2)-X(1))
G(2) = VDOT(1) - DUDX

ELSE
CALL EXACT(T,UE,NPDE,X(NPTS),1)
G(1) = U(1,NPTS) - U(2,NPTS) - UE(1,1) + UE(2,1)
DUDX = (U(1,NPTS)+U(2,NPTS)-U(1,NPTS-1)-U(2,NPTS-1))/(X(NPTS)

+ -X(NPTS-1))
G(2) = VDOT(2) + 3.0e0*DUDX

END IF
RETURN
END

*
SUBROUTINE NMFLX1(NPDE,T,X,NCODE,V,ULEFT,URIGHT,FLUX,IRES)

* .. Scalar Arguments ..
real T, X
INTEGER IRES, NCODE, NPDE

* .. Array Arguments ..
real FLUX(NPDE), ULEFT(NPDE), URIGHT(NPDE), V(*)

* .. Executable Statements ..
FLUX(1) = 0.5e0*(3.0e0*ULEFT(1)-URIGHT(1)+3.0e0*ULEFT(2)+URIGHT(2)

+ )
FLUX(2) = 0.5e0*(3.0e0*ULEFT(1)+URIGHT(1)+3.0e0*ULEFT(2)-URIGHT(2)

+ )
RETURN
END

*
SUBROUTINE ODEDEF(NPDE,T,NCODE,V,VDOT,NXI,XI,UCP,UCPX,UCPT,F,IRES)

* .. Scalar Arguments ..
real T
INTEGER IRES, NCODE, NPDE, NXI

* .. Array Arguments ..
real F(*), UCP(NPDE,*), UCPT(NPDE,*), UCPX(NPDE,*),

+ V(*), VDOT(*), XI(*)
* .. Executable Statements ..

IF (IRES.EQ.-1) THEN
F(1) = 0.0e0
F(2) = 0.0e0

ELSE
F(1) = V(1) - UCP(1,1) + UCP(2,1)
F(2) = V(2) - UCP(1,2) - UCP(2,2)

END IF
RETURN
END

*
SUBROUTINE EXACT(T,U,NPDE,X,NPTS)

* Exact solution (for comparison and b.c. purposes)
* .. Scalar Arguments ..

real T
INTEGER NPDE, NPTS

* .. Array Arguments ..
real U(NPDE,*), X(*)
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* .. Scalars in Common ..
real P

* .. Local Scalars ..
real F, G
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC COS, EXP, SIN

* .. Common blocks ..
COMMON /PI/P

* .. Save statement ..
SAVE /PI/

* .. Executable Statements ..
DO 20 I = 1, NPTS

F = EXP(P*(X(I)-3.0e0*T))*SIN(2.0e0*P*(X(I)-3.0e0*T))
G = EXP(-2.0e0*P*(X(I)+T))*COS(2.0e0*P*(X(I)+T))
U(1,I) = F + G
U(2,I) = F - G

20 CONTINUE
RETURN
END

9.1.2 Program Data

None.

9.1.3 Program Results

D03PLF Example Program Results

Example 1

NPTS = 141 ATOL = 0.100E-04 RTOL = 0.250E-03

T = 0.500
X Approx U1 Exact U1 Approx U2 Exact U2

0.0000 -0.0432 -0.0432 0.0432 0.0432
0.1429 -0.0220 -0.0220 -0.0001 -0.0000
0.2857 -0.0200 -0.0199 -0.0232 -0.0231
0.4286 -0.0123 -0.0123 -0.0175 -0.0176
0.5714 0.0248 0.0245 0.0227 0.0224
0.7143 0.0835 0.0827 0.0833 0.0825
0.8571 0.1043 0.1036 0.1046 0.1039
1.0000 -0.0010 -0.0001 -0.0008 0.0001

Number of integration steps in time = 158
Number of function evaluations = 1154
Number of Jacobian evaluations = 16
Number of iterations = 413
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9.2 Example 2

This example is the standard shock-tube test problem proposed by Sod (1978) for the Euler equations of
gas dynamics. The problem models the flow of a gas in a long tube following the sudden breakdown of a
diaphragm separating two initial gas states at different pressures and densities. There is an exact solution
to this problem which is not included explicitly as the calculation is quite lengthy. The PDEs are

@�

@t
þ @m

@x
¼ 0;

@m

@t
þ @

@x

m2

�
þ ð� � 1Þ e�m2

2�

� �� �
¼ 0;

@e

@t
þ @

@x

me

�
þm

�
ð� � 1Þ e�m2

2�

� �� �
¼ 0;

where � is the density; m is the momentum, such that m ¼ �u, where u is the velocity; e is the specific
energy; and � is the (constant) ratio of specific heats. The pressure p is given by

p ¼ ð� � 1Þ e� �u2

2

� �
:

The solution domain is 0 � x � 1 for 0 < t � 0:2, with the initial discontinuity at x ¼ 0:5, and initial
conditions

�ðx; 0Þ ¼ 1; mðx; 0Þ ¼ 0; eðx; 0Þ ¼ 2:5; for x < 0:5;
�ðx; 0Þ ¼ 0:125; mðx; 0Þ ¼ 0; eðx; 0Þ ¼ 0:25; for x > 0:5:

The solution is uniform and constant at both boundaries for the spatial domain and time of integration
stated, and hence the physical and numerical boundary conditions are indistinguishable and are both given
by the initial conditions above. The evaluation of the numerical flux for the Euler equations is not trivial;
the Roe algorithm given in Section 3 can not be used directly as the Jacobian is nonlinear. However, an
algorithm is available using the parameter-vector method (see Roe (1981)), and this is provided in the
utility routine D03PUF. An alternative Approxiate Riemann Solver using Osher’s scheme is provided in
D03PVF. Either D03PUF or D03PVF can be called from the user-supplied NUMFLX subroutine.

9.2.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

SUBROUTINE EX2
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NPDE, NPTS, NCODE, NXI, NEQN, NIW, NWKRES,

+ LENODE, MLU, NW
PARAMETER (NPDE=3,NPTS=141,NCODE=0,NXI=0,

+ NEQN=NPDE*NPTS+NCODE,NIW=NEQN+24,
+ NWKRES=NPDE*(2*NPTS+3*NPDE+32)+7*NPTS+4,
+ LENODE=9*NEQN+50,MLU=3*NPDE-1,NW=(3*MLU+1)
+ *NEQN+NWKRES+LENODE)

* .. Scalars in Common ..
real EL0, ER0, GAMMA, RL0, RR0

* .. Local Scalars ..
real D, P, TOUT, TS, V
INTEGER I, IFAIL, IND, IT, ITASK, ITOL, ITRACE, K
CHARACTER LAOPT, NORM

* .. Local Arrays ..
real ALGOPT(30), ATOL(1), RTOL(1), U(NPDE,NPTS),

+ UE(3,8), W(NW), X(NPTS), XI(1)
INTEGER IW(NIW)

* .. External Subroutines ..
EXTERNAL BNDRY2, D03PEK, D03PLF, D03PLP, NMFLX2, UVINIT

* .. Common blocks ..
COMMON /INIT/EL0, ER0, RL0, RR0
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COMMON /PARAMS/GAMMA
* .. Save statement ..

SAVE /PARAMS/, /INIT/
* .. Executable Statements ..

WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Example 2’
WRITE (NOUT,*)

* Skip heading in data file
READ (NIN,*)

*
* Problem parameters

GAMMA = 1.4e0
EL0 = 2.5e0
ER0 = 0.25e0
RL0 = 1.0e0
RR0 = 0.125e0
ITRACE = 0
ITOL = 1
NORM = ’2’
ATOL(1) = 0.5e-2
RTOL(1) = 0.5e-3
WRITE (NOUT,99994) GAMMA, EL0, ER0, RL0, RR0
WRITE (NOUT,99996) NPTS, ATOL, RTOL

*
* Initialise mesh
*

DO 20 I = 1, NPTS
X(I) = 1.0e0*(I-1.0e0)/(NPTS-1.0e0)

20 CONTINUE
*
* Initial values of variables

CALL UVINIT(NPDE,NPTS,X,U)
*

XI(1) = 0.0e0
LAOPT = ’B’
IND = 0
ITASK = 1

*
DO 40 I = 1, 30

ALGOPT(I) = 0.0e0
40 CONTINUE

* Theta integration
ALGOPT(1) = 2.0e0
ALGOPT(6) = 2.0e0
ALGOPT(7) = 2.0e0

* Max. time step
ALGOPT(13) = 0.5e-2

*
TS = 0.0e0
WRITE (NOUT,99998)
DO 100 IT = 1, 2

TOUT = IT*0.1e0
IFAIL = 0

*
CALL D03PLF(NPDE,TS,TOUT,D03PLP,NMFLX2,BNDRY2,U,NPTS,X,NCODE,

+ D03PEK,NXI,XI,NEQN,RTOL,ATOL,ITOL,NORM,LAOPT,
+ ALGOPT,W,NW,IW,NIW,ITASK,ITRACE,IND,IFAIL)

*
WRITE (NOUT,99997) TS

*
* Read exact data at output points ..

READ (NIN,*)
DO 60 I = 1, 8

READ (NIN,99999) UE(1,I), UE(2,I), UE(3,I)
60 CONTINUE

*
* Calculate density, velocity and pressure ..

K = 0
DO 80 I = 29, NPTS - 14, 14

D = U(1,I)
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V = U(2,I)/D
P = D*(GAMMA-1.0e0)*(U(3,I)/D-0.5e0*V**2)
K = K + 1
WRITE (NOUT,99993) X(I), D, UE(1,K), V, UE(2,K), P, UE(3,K)

80 CONTINUE
100 CONTINUE

*
WRITE (NOUT,99995) IW(1), IW(2), IW(3), IW(5)
RETURN

*
99999 FORMAT (3(1X,F6.4))
99998 FORMAT (4X,’X’,4X,’APPROX D’,1X,’EXACT D’,2X,’APPROX V’,1X,’EXAC’,

+ ’T V’,2X,’APPROX P’,1X,’EXACT P’)
99997 FORMAT (/’ T = ’,F6.3,/)
99996 FORMAT (/’ NPTS = ’,I4,’ ATOL = ’,e10.3,’ RTOL = ’,e10.3,/)
99995 FORMAT (/’ Number of integration steps in time = ’,I6,/’ Number ’,

+ ’of function evaluations = ’,I6,/’ Number of Jacobian ’,
+ ’evaluations =’,I6,/’ Number of iterations = ’,I6,/)

99994 FORMAT (/’ GAMMA =’,F6.3,’ EL0 =’,F6.3,’ ER0 =’,F6.3,’ RL0 =’,
+ F6.3,’ RR0 =’,F6.3)

99993 FORMAT (1X,F6.4,6(3X,F6.4))
END

*
SUBROUTINE UVINIT(NPDE,NPTS,X,U)

* .. Scalar Arguments ..
INTEGER NPDE, NPTS

* .. Array Arguments ..
real U(NPDE,NPTS), X(NPTS)

* .. Scalars in Common ..
real EL0, ER0, RL0, RR0

* .. Local Scalars ..
INTEGER I

* .. Common blocks ..
COMMON /INIT/EL0, ER0, RL0, RR0

* .. Save statement ..
SAVE /INIT/

* .. Executable Statements ..
DO 20 I = 1, NPTS

IF (X(I).LT.0.5e0) THEN
U(1,I) = RL0
U(2,I) = 0.0e0
U(3,I) = EL0

ELSE IF (X(I).EQ.0.5e0) THEN
U(1,I) = 0.5e0*(RL0+RR0)
U(2,I) = 0.0e0
U(3,I) = 0.5e0*(EL0+ER0)

ELSE
U(1,I) = RR0
U(2,I) = 0.0e0
U(3,I) = ER0

END IF
20 CONTINUE

RETURN
END

*
SUBROUTINE BNDRY2(NPDE,NPTS,T,X,U,NCODE,V,VDOT,IBND,G,IRES)

* .. Scalar Arguments ..
real T
INTEGER IBND, IRES, NCODE, NPDE, NPTS

* .. Array Arguments ..
real G(NPDE), U(NPDE,NPTS), V(*), VDOT(*), X(NPTS)

* .. Scalars in Common ..
real EL0, ER0, RL0, RR0

* .. Common blocks ..
COMMON /INIT/EL0, ER0, RL0, RR0

* .. Save statement ..
SAVE /INIT/

* .. Executable Statements ..
IF (IBND.EQ.0) THEN

G(1) = U(1,1) - RL0
G(2) = U(2,1)

D03 – Partial Differential Equations D03PLF

[NP3546/20A] D03PLF.25



G(3) = U(3,1) - EL0
ELSE

G(1) = U(1,NPTS) - RR0
G(2) = U(2,NPTS)
G(3) = U(3,NPTS) - ER0

END IF
RETURN
END

*
SUBROUTINE NMFLX2(NPDE,T,X,NCODE,V,ULEFT,URIGHT,FLUX,IRES)

* .. Scalar Arguments ..
real T, X
INTEGER IRES, NCODE, NPDE

* .. Array Arguments ..
real FLUX(NPDE), ULEFT(NPDE), URIGHT(NPDE), V(*)

* .. Scalars in Common ..
real GAMMA

* .. Local Scalars ..
INTEGER IFAIL
CHARACTER PATH, SOLVER

* .. External Subroutines ..
EXTERNAL D03PUF, D03PVF

* .. Common blocks ..
COMMON /PARAMS/GAMMA

* .. Save statement ..
SAVE /PARAMS/

* .. Executable Statements ..
IFAIL = 0
SOLVER = ’R’
IF (SOLVER.EQ.’R’) THEN

* ROE SCHEME ..
CALL D03PUF(ULEFT,URIGHT,GAMMA,FLUX,IFAIL)

ELSE
* OSHER SCHEME ..

PATH = ’P’
CALL D03PVF(ULEFT,URIGHT,GAMMA,PATH,FLUX,IFAIL)

END IF
RETURN
END

9.2.2 Program Data

D03PLF Example Program Data
D, V, P at selected output pts. For T = 0.1:
1.0000 0.0000 1.0000
1.0000 0.0000 1.0000
0.8775 0.1527 0.8327
0.4263 0.9275 0.3031
0.2656 0.9275 0.3031
0.1250 0.0000 0.1000
0.1250 0.0000 0.1000
0.1250 0.0000 0.1000
For T = 0.2:
1.0000 0.0000 1.0000
0.8775 0.1527 0.8327
0.6029 0.5693 0.4925
0.4263 0.9275 0.3031
0.4263 0.9275 0.3031
0.2656 0.9275 0.3031
0.2656 0.9275 0.3031
0.1250 0.0000 0.1000
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9.2.3 Program Results

D03PLF Example Program Results

Example 2

GAMMA = 1.400 EL0 = 2.500 ER0 = 0.250 RL0 = 1.000 RR0 = 0.125

NPTS = 141 ATOL = 0.500E-02 RTOL = 0.500E-03

X APPROX D EXACT D APPROX V EXACT V APPROX P EXACT P

T = 0.100

0.2000 1.0000 1.0000 -.0000 0.0000 1.0000 1.0000
0.3000 1.0000 1.0000 -.0000 0.0000 1.0000 1.0000
0.4000 0.8668 0.8775 0.1665 0.1527 0.8188 0.8327
0.5000 0.4299 0.4263 0.9182 0.9275 0.3071 0.3031
0.6000 0.2969 0.2656 0.9274 0.9275 0.3028 0.3031
0.7000 0.1250 0.1250 0.0000 0.0000 0.1000 0.1000
0.8000 0.1250 0.1250 -.0000 0.0000 0.1000 0.1000
0.9000 0.1250 0.1250 -.0000 0.0000 0.1000 0.1000

T = 0.200

0.2000 1.0000 1.0000 -.0000 0.0000 1.0000 1.0000
0.3000 0.8718 0.8775 0.1601 0.1527 0.8253 0.8327
0.4000 0.6113 0.6029 0.5543 0.5693 0.5022 0.4925
0.5000 0.4245 0.4263 0.9314 0.9275 0.3014 0.3031
0.6000 0.4259 0.4263 0.9277 0.9275 0.3030 0.3031
0.7000 0.2772 0.2656 0.9272 0.9275 0.3031 0.3031
0.8000 0.2657 0.2656 0.9276 0.9275 0.3032 0.3031
0.9000 0.1250 0.1250 -.0000 0.0000 0.1000 0.1000

Number of integration steps in time = 170
Number of function evaluations = 411
Number of Jacobian evaluations = 1
Number of iterations = 2
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